UVA 11168 Airport(凸包)

Sample Input
4
4
0 0
0 1
1 0
1 1
2
15035 39572
34582 39535
3
0 0
0 1
1 0
5
0 0
0 2
2 0
2 2
1 1
Sample Output
Case #1: 0.500
Case #2: 0.000
Case #3: 0.236
Case #4: 1.000

 给出 n 给点,要求求一条直线使得所有点到这条直线的距离之和最小且所有点都位于直线的一侧,输出平均值

易知,如果求出这些点所形成的凸包,那么这条直线一定是这个凸包的一条边

那么只需要根据点到直线的距离公式计算点到直线的距离即可  \frac{|Ax_{0}+By_{0}+C|}{\sqrt{A^2+B^2}}   ,因为所有的在直线上的点都可以使此式为 0 且所有的点都在直线的一侧,所以求出 x 值的和,y 的值的和,得到  \frac{|Ax+By+n*C|}{\sqrt{A^2+B^2}} ,即可求得所有点到任意直线的距离

const int N=1e4+5;

    int i,j,k;
    int n,m,t;
    struct Point
    {
        double x,y;
        Point(double x=0,double y=0):x(x),y(y){}
        bool operator<(Point o)
        {
            return (o.x!=x)?x<o.x:y<o.y;
        }
        void read()
        {
            scanf("%lf%lf",&x,&y);
        }
    }p[N],ch[N];
    typedef Point Vector;
    Vector operator+(Vector a,Vector b){ return Vector(a.x-b.x,a.y-b.y); }
    Vector operator-(Vector a,Vector b){ return Vector(a.x-b.x,a.y-b.y); }
    double Cross(Vector a,Vector b){ return a.x*b.y-a.y*b.x; }
    struct Line //两点式
    {
        Point a,b;
        double A,B,C;
        Line(Point a,Point b):a(a),b(b){
            A=b.y-a.y; B=a.x-b.x; C=b.x*a.y-a.x*b.y;
        }
    };

int ConvexHull(Point *p,int n,Point *ch)
{
    sort(p,p+n);
    int m=0;
    for(int i=0;i<n;i++){
        while(m>1 && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
        ch[m++]=p[i];
    }
    int k=m;
    for(int i=n-2;i>=0;i--){
        while(m>k && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
        ch[m++]=p[i];
    }
    if(n>1) m--;
    return m;
}

double go(Point *p,int n,double Sx,double Sy,int edge)
{
    if(n<=2) return 0;
    double ans=1e9;
    for(int i=1;i<=n;i++){
        Line tmp(p[i-1],p[i%n]);
        ans=min(fabs((tmp.A*Sx+tmp.B*Sy+tmp.C*edge)/sqrt(tmp.A*tmp.A+tmp.B*tmp.B)),ans);
    }
    return ans;
}

int main()
{
    //IOS;
    int num=0;
    rush(){
        double Sx=0,Sy=0;
        sd(n);
        for(int i=0;i<n;i++) p[i].read(),Sx+=p[i].x,Sy+=p[i].y;
        int vex=ConvexHull(p,n,ch);
        double ans=go(ch,vex,Sx,Sy,n);
        printf("Case #%d: %.3lf\n",++num,ans/n);
    }
    PAUSE;
    return 0;
}

 

 

 

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页