SGU 154. Factorial(二分+数学)

 

给出一个询问 Q,问是否存在一个数 N,使得 N !中包含 Q 个 0,如果有输出 N 的值 

其实想一下应该可以想到,如果 N!中包含 0 的话,一定是在最后面,而阶乘当中想要形成 10,只能依靠 5*2 所作的贡献,因为 2 的个数 >= 5 的个数,也就是寻找  \small 5,5^2,5^3......5^k 的个数。

根据容斥原理,N/5 之后,N/25 的贡献只有 1,同理,以此类推 N/625 的贡献也为 1。

所以我们只需要找到一个数 N ,使得当式子   \small \sum_{i=1}^{k}N/5^i=Q  可以成立即可

利用二分查找,下界显然是 0,上界 5*Q 应该就够了

ll C(ll aim)
{
    ll ans=0;
    while(aim){
        ans+=aim/5;
        aim/=5;
    }
    return ans;
}

int main()
{
    //IOS;
    ll n;
    while(sll(n)==1){
        if(n==0) puts("1");
        else{
            ll l=0,r=5e8+1ll,ans=0;
            while(r>=l){
                ll mid=l+r>>1;
                if(C(mid)<n) l=mid+1;
                else r=mid-1,ans=mid;
            }
            if(C(ans)==n) pll(ans);
            else puts("No solution");
        }
    }
    //PAUSE;
    return 0;
}

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页