1634:曹冲养猪(中国剩余定理)

 

利用中国剩余定理 求解 b[1]=n1%a[1],b[2]=n2%a[2], ……b[x]=nx%a[x]

假设 m=a[1]*a[2]*……a[n]

那么利用 ex_gcd(m/a[i],a[i],x,y)

求解的是,两个互质的数 m/a[i],a[i] 的方程 ,即 x 为 m/a[i] 的逆元,这样在 *余数 b[i],就可以得到除 a[i] 之外的所有数的公倍数 ni,且 ni 还满足 ni%m\equivb[i]

const int N=1e3+5;
ll mod=1e9+7;
 
    int n,m,t;
    int i,j,k;
    ll a[N],b[N];

ll ex_gcd(ll a,ll b,ll &x,ll &y) //ax+by=gcd
{
    ll gcd=a;
    if(!b) x=1,y=0;
    else {
        gcd=ex_gcd(b,a%b,y,x);
        y-=(a/b)*x;
    }
    return gcd;
}

void rep(ll &x)
{
    x%=mod;
    x+=mod;
    x%=mod;
}

int main()
{
    IOS;
    ll m=1,x,y;
    cin>>n;
    for(i=1;i<=n;i++){
        cin>>a[i]>>b[i];
        m*=a[i];
    }

    ll ans=0; mod=m;
    for(i=1;i<=n;i++){
        ex_gcd(m/a[i],a[i],x,y);
        ans+=m/a[i]*x*b[i];  //求 ni,再将 ni 相加
        rep(ans);
    }
    cout<<ans<<endl;
    //PAUSE;
    return 0;
}

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页