有 2*n-2 个车位 ,有 4 种车,车可以看作为无穷多,当且仅当 n 辆相同种类的车挨在一起时,老板会很开心,问有多少种方式让老板开心
对于每种车而言:
有 n 辆放在停车场的两端时,此时还剩 n-2 个位置,需要用另一种颜色的车将其分隔开,剩下的每个位子可以放任意的车 ,即 2(表示两端)*4*3*4^(n-3)
当这 n 辆车不放在两端时,对于这 n 辆车有 n-3 个位置可以放, 在这 n 辆车的两端都要放置与其对应的不同颜色的车,此时还剩 n-4 个位置可以随便放,4*(n-3)*3*3*4^(n-4)
ll pow_mod(ll a,int x)
{
if(x<0) return 1;
ll ans=1;
while(x){
if(x&1) ans*=a;
a=a*a;
x>>=1;
}
return ans;
}
int main()
{
IOS;
ll n;
while( cin>>n ){
ll ans=2*4*3*pow_mod(4,n-3);
ans+=4*(n-3)*3*3*pow_mod(4,n-4);
cout<<ans<<endl;
}
//PAUSE;
return 0;
}